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A B S T R A C T   

Knowledge of RNA solvent accessibility has recently become attractive due to the increasing awareness of its 
importance for key biological process. Accurately predicting the solvent accessibility of RNA is crucial for un
derstanding its 3D structure and biological function. In this study, we develop a novel computational method, 
termed M2pred, for accurately predicting the solvent accessibility of RNA from sequence-based multi-scale 
context feature. In M2pred, three single-view features, i.e., base-pairing probabilities, position-specific frequency 
matrix, and a binary one-hot encoding, are first generated as three feature sources, and immediately concate
nated to engender a super feature. Secondly, for the super feature, the matrix-format features of each 
nucleotide are extracted using an initialized sliding window technique, and regularly stacked into a cube- 
format feature. Then, using multi-scale context feature extraction strategy, a pyramid feature constructed of 
contextual feature of four scales related to target nucleotides is extracted from the cube-format feature. Finally, a 
customized multi-shot neural network framework, which is equipped with four different scales of receptive fields 
mainly integrating several residual attention blocks, is designed to dig discrimination information from the 
contextual pyramid feature. Experimental results demonstrate that the proposed M2pred achieve a high pre
diction performance and outperforms existing state-of-the-art prediction methods of RNA solvent accessibility.   

1. Introduction 

Knowledge of the RNA solvent accessibility plays an important role 
in various key biological processes. e.g., RNA-ligand interactions [1,2], 
protein-RNA recognition studies [3], RNA fold recognition [4], and 
identification of structural signature in RNA thermal adaptation [5]. 
Furthermore, it can provide essential clues for the RNA structure pre
diction, which will speed up the progress of RNA function detection and 
understanding. Hence, accurate determination of the solvent accessi
bility of RNA molecule is critical for understanding its tertiary structure 
and biological function, especially in the post-genome era where a large 
volume of non-coding RNA sequences without being structurally 
determined is rapidly accumulated [6–8]. Nevertheless, the traditional 
wet-laboratory methods, e.g., Cryo-electron microscopy [9], X-ray 
crystallography [10], nuclear magnetic resonance [11], and hydroxyl 
radical footprint [12,13], for predicting the solvent accessibility of RNA 

are expensive and time-consuming. In view of this situation, it is highly 
desirable to develop cost-effective computational methods for 
high-throughput and accurate RNA solvent accessibility prediction. 

Early-stage methods of predicting RNA solvent accessibility are 
developed mainly based on traditional machine learning (ML) algo
rithms. For example, RNAsnap, to the best of our knowledge, it is the 
first report on solving the problem of RNA solvent accessibility predic
tion. The RNAsnap presented in this report includes two separate ML- 
based methods, i.e., RNAsnap-seq [14] and RNAsnap-prof [14], which 
use the query RNA sequence alone and the evolutionary information 
from multiple sequence alignment as the input into 
support-vector-machine (SVM) algorithms, respectively, to predict RNA 
solvent accessibility. However, applying the ensemble of 
sequence-based features and traditional ML classifiers widely to process 
the RNA biology knowledge recognition [14–17] inevitably suffers from 
certain disadvantages. For instance, with the continuous increase and 

* Corresponding author. 
** Corresponding author. 
*** Corresponding author. 

E-mail addresses: hujunum@zjut.edu.cn (J. Hu), njyudj@njust.edu.cn (D.-J. Yu), zgj@zjut.edu.cn (G.-J. Zhang).  

Contents lists available at ScienceDirect 

Analytical Biochemistry 

journal homepage: www.elsevier.com/locate/yabio 

https://doi.org/10.1016/j.ab.2022.114802 
Received 21 February 2022; Received in revised form 11 June 2022; Accepted 28 June 2022   

mailto:hujunum@zjut.edu.cn
mailto:njyudj@njust.edu.cn
mailto:zgj@zjut.edu.cn
www.sciencedirect.com/science/journal/00032697
https://www.elsevier.com/locate/yabio
https://doi.org/10.1016/j.ab.2022.114802
https://doi.org/10.1016/j.ab.2022.114802
https://doi.org/10.1016/j.ab.2022.114802
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ab.2022.114802&domain=pdf


Analytical Biochemistry 654 (2022) 114802

2

rapid accumulation of RNA sequence data, traditional ML algorithms 
cannot be effectively mine the hidden information in a multitude of 
sequences, making it difficult for the ML-based methods to be considered 
the optimal option for training classifiers. 

To overcome the drawback of conventional shallow ML algorithms 
that cannot effectively mine large amounts of data, a few deep learning 
(DL) techniques that utilize multi-layered artificial neural networks to 
learn tasks, have been successfully applied to solve many bioinformatics 
and computational biology problems, including RNA solvent accessi
bility prediction. Sun et al. used unidirectional long short-term memory 
recurrent neural networks (ULSTM) [18] to dig out the evolutionary 
information from improved sequence profiles based on the covariance 
models [19,20]. ULSTM-based algorithms could improve the accuracy of 
RNA solvent accessibility prediction; however, due to the limits of the 
ULSTM, it cannot handle long-range information dependency well. To 
address this problem, Hanumanthappa et al. proposed two separate deep 
learning-based methods, i.e., RNAsnap2 [20] and RNAsnap2(SingleSeq) 
[21], which successfully combined the dilated convolutional neural 
networks [22,23] with one fusion feature, for predicting RNA solvent 
accessibility. Nevertheless, despite the efficiency and accuracy achieved, 
the existing methods still have several following critical deficiencies. 

First, to develop powerful computational models for RNA solvent 
accessibility prediction, a critical step is to extract sufficient discrimi
native features to construct more accurate models. By revisiting existing 
RNA solvent accessibility prediction methods, it was found that all of 
them employ limited scale one-shot feature related to target nucleotides 
to capture discriminative information. Despite preserving a certain de
gree of discriminative information, they still lose the remote low-level 
feature information that is likely to aid in predicting target nucleo
tides solvent accessibility. Second, a high-performance deep-learning 
framework, which is able to learn high-level representation knowledge 
from low-level feature information based on the raw nucleotide 
sequence, should possess multiple receptive field that accepts multi- 
scale contextual information, instead of existing ML- and DL-based 
methods using a single receptive field to capture only an inherent 
contextual information. Therefore, there remains an urgent need for new 
and high-performance prediction methods of RNA solvent accessibility. 

To address the important issues mentioned above, in this study, we 
propose a novel deep learning-based method, called M2pred, to further 
improve the performance of RNA solvent accessibility prediction. Spe
cifically, we first extract three single-view feature sources, i.e., base- 
pairing probabilities, position-specific frequency matrix, and a binary 
one-hot encoding, from primary sequences, and immediately concate
nate them to engender a super feature. Secondly, for the super feature, 
the matrix-format features of each nucleotide are extracted using an 
initialized sliding window technique, and regularly stacked into a cube- 
format feature. Then, to extract more effective information, we design 
one multi-scale context feature extraction strategy (refer to the section 
of “Multi-scale Context Feature Extraction” for detail) to generate a 
pyramid feature constructed of contextual features of four scales asso
ciated with target nucleotides, from the cube-format feature. Finally, a 
well-designed multi-shot neural network framework, which is equipped 
with four different scales of receptive fields mainly integrating several 
residual attention blocks, is designed to capture more discriminative 
knowledge hidden in the contextual pyramid feature. Benchmarking 
results and comparisons demonstrate that the proposed M2pred out
performs existing state-of-the-art ML-based methods as well as DL-based 
methods, and is a suitable DL-based method for predicting RNA solvent 
accessibility. Furthermore, based on the proposed M2pred, we imple
ment a new standalone-version predictor for predicting RNA solvent 
accessibility, which is freely available at https://github.com/XueQiang 
Fan/M2pred/for academic use. 

2. Materials and methods 

2.1. Benchmark datasets 

One comprehensive dataset of benchmark RNAs, which is utilized to 
evaluate the DL-based methods, i.e., RNAsol [20], RNAsnap2 [23], and 
RNAsnap2(SingleSeq) [21], is collected to fairly examine the effective
ness of the proposed M2pred in this study. This dataset contains three 
subsets: one training dataset called TR119, two independent testing 
datasets, named TS45 and TS31, respectively. All RNA sequences in the 
benchmark dataset, which have >32 nucleotides and < 4 Å X-ray res
olution, are non-redundant from each other through CD-HIT-EST [24] 
and BLASTclust program [25] with identity cut-off of 80% and 30%, 
respectively. TR119, TS45, and TS31 consist of 119 (119 effectively as 1 
RNA appeared twice), 45, and 31 high-resolution RNA chains, respec
tively. In addition to TS45 and TS31, we further prepare a new inde
pendent test set TEST36 (36 RNAs) by downloading all protein-free and 
protein-complex RNAs (204 chains) which are submitted to PDB after 
January 2020, the previous date for obtaining TR119, TS45, and TS31. 
These 204 chains are then filtered using CD-HIT-EST and BLASTclust 
program with 80% and 30% identity cut-off, respectively, so that the 
new set is non-redundant from the training (TR119) and test (TS45 and 
TS31) sets and between each other. As a result, 44 chains were retained. 
Subsequently, we further exclude potential family RNA chains by 
searching of these 44 chains against the training and testing data sets 
with a large E-value cut-off 10 and 0.1 using BLAST-N and Infernal tools 
[19,26,27], respectively. The final remaining 36 chains constitute the 
independent testing set, called TEST36. We also statistically analyze the 
maximum, minimum, and average sequence lengths of each RNA in the 
four subsets, i.e., TR119, TS45, TS31, and TEST36, and whether it is 
RNA-protein complexes or not (see Supplementary Table S1). Further
more, as shown in Supplementary Table S2, for these three subsets, the 
distribution of the number of Adenine (A), Cytosine (C), Uracil (U), and 
Guanine (G) nucleotides varies between 22% and 26%, 22% and 27%, 
18% and 22%, 29% and 33%, respectively. 

The ground-truth labels of relative solvent accessible surface area 
(RSA) for each RNA of TR119, TS45, TS31, and TEST36 are derived from 
their tertiary structure using POPS [14,20,21,28]. Concretely, the ter
tiary structure of the individual chain is extracted by using Biopython 
[29] from the tertiary structure of multiple chains or RNA-protein 
complexes. Subsequently, generating the ground-truth ASA values for 
every RNA chain by POPS [28], a fast tool for solvent accessible surface 
area (ASA) at atomic and residue level. Finally, the ground-truth labels 
of RSA in one RNA sequence are normalized values from 0 to 1 by 
dividing the ASA by the maximum ASA value of the corresponding 
nucleotide, i.e., A, G = 400 Å2 and U, C = 350 Å2. 

2.2. Performance measurement 

Two widely used evaluation indexes, i.e., mean absolute error (MAE) 
and Pearson Correlation Coefficient (PCC), are employed to evaluate the 
performance of RSA prediction. MAE is used to quantitatively measure 
the average deviation between the predicted and experimental RSA 
values of each RNA. PCC is employed to quantify the relationship be
tween the predicted and experimental RSA values of each RNA, and its 
value is between − 1 and 1. The two indexes can be calculated by 

following equations: MAE =
∑N

i
|λi − μi|/N, PCC =

∑N

i
(λi − λ)× (μi −

μ)/

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑N

i
(λi − λ)2

×
∑N

i
(μi − μ)2

√

. Where N is the length of the query RNA 

chain; λi and μi are the predicted and experimental RSA values of the ith 
nucleotide in the query RNA, and λ and μ are the corresponding average 
values of the entire query RNA, respectively. Furthermore, to show the 
statistical significance of improvement by M2pred over other state-of- 
the-art methods, a paired Student’s t-test [30] and Wilcoxon rank-sum 

X.-Q. Fan et al.                                                                                                                                                                                                                                  

https://github.com/XueQiangFan/M2pred/
https://github.com/XueQiangFan/M2pred/


Analytical Biochemistry 654 (2022) 114802

3

test [31] are used to PCC and MAE and predicted RSA values to obtain 
p-value, respectively. The smaller the p-value is, the more significant the 
difference is between the two methods. 

2.3. Feature representation 

In this study, the input to M2pred is an RNA sequence of length L. 
Each nucleotide (A, C, G, or U) is encoded into three single-view features 
using trainable embedding functions, i.e., base-pairing probabilities, 
position-specific frequency matrix, and a binary one-hot encoding.  

(1) Base-pairing Probabilities (BPP). Inspired by the fact that protein 
secondary structure has a critical impact on the protein solvent 
accessibility [32–34], RNA secondary structure information, i.e., 
base-pairing probabilities, is employed to predict RNA solvent 
accessibility as one feature source. To avoid the possible 
over-fitting, the LinearPartition tool [35] with the thermody
namic parameters, i.e., LinearPartition-V version, which can be 
downloaded at http://linearfold.org/partition, is utilized to 
generate the base-pairing probabilities of RNA secondary struc
ture instead of the default version where the parameters are 
learned using the ML-based algorithm. In detail, given each RNA 
sequence, LinearPartition-V precisely predicts its base-pairing 
probabilities matrix (L rows and one column, where L is the 
length of the RNA sequence), which reveals the pairing proba
bility of A-U, G-C or G-U base pairs in the RNA sequence. 

(2) Position-Specific Frequency Matrix (PSFM). Position-Specific Fre
quency Matrix (PSFM) is employed to dig out the RNA evolu
tionary information for reflecting the nucleotide conservation 
score at specific positions and improving the performance of RNA 
RSA prediction. To obtain the PSFM profile, given a target 
sequence with L nucleotides, first, RNAfold program [36] is used 
to annotate the secondary structure information of this RNA 
sequence. Second, Infernal [19], a fast and accurate RNA 
sequence alignment tool, is utilized to search through the NCBI’s 
nucleotide sequence database (available at https://ftp.ncbi.nih. 
gov/) with default parameters 10.0 as the E-value cutoff for 
constructing an multiple sequence alignment profile (MSA). 
Then, the MSA is filtered to guarantee that the sequence identity 
between each two aligned sequences is less than 90% and no 
aligned sequence includes more than 50% gaps. Finally, based on 
the filtered precise MSA profile (PMSA), the corresponding PSFM 
profile with size of L × 4 is calculated as follows: 

PSFMi,j =

∑M
m=1ψ

(
PMSAm

i , Φj
)
+ β
(
Ti,Φj

)

∑4
n=1

( ∑M
m=1ψ

(
PMSAm

i , Φn
)
+ β(Ti,Φn)

) (1)  

Where PSFMi,j is the ith row and jth column element of PSFM profile; 
PMSAm

i stands for the nucleotide type at the ith position of the mth 
aligned sequence in the PMSA profile, i = 1,2, …, L, and m = 1,2, …, M; 
Ti is the nucleotide type at the ith position in the target RNA sequence; Φj 

and Φn are the nucleotide type of the jth and nth element of the set of 
four naturally-occurring nucleotide types, i.e., A, U, C, and G, respec
tively, j, n = 1,2,3,4; ψ(x, y) = 1 if x is same as y, otherwise, ψ(x,y) = 0; 
β(x, y) = 9 if x same as y, or else β(x,y) = 0.3.  

(3) One-hot Encoding (OHE). A binary one-hot vector of dimension L 
× 4 is used to represent an RNA sequence, where L is the length of 
the RNA sequence, and four corresponds to the number of 
nucleotide types, i.e., A, U, C, and G. In detail, in one-hot 
encoding, each nucleotide in a sequence is denoted as one of 
four one-hot vectors [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], and [0, 0, 
0, 1], the value of 1 corresponding to the nucleotide at that po
sition and 0 elsewhere [20,21,37–39]. 

2.4. Deep multi-scale context feature learning architecture 

Deep multi-scale context feature learning architecture consists of 
two-stage process of multi-scale context feature extraction and deep 
multi-shot neural network construction, where the flowchart is depicted 
in Fig. 1. 

2.5. Multi-scale context feature extraction 

Deep neural network can automatically learn high-level represen
tation from sequence-based features, such as nucleotide composition 
and evolutionary information. Nevertheless, only the observed a single 
scale one-shot feature or feature information of limited spatial di
mensions related to target nucleotides is not sufficient for training a 
high-performance model since exposure or burial of nucleotide should 
be affected by different factors. Recognizing this, in this study, a multi- 
scale sliding window technique and clipping algorithms are utilized to 
design a multi-scale context feature extraction strategy, which provides 
more discrimination contextual features at multiple spatial scales for 
target nucleotides. Fig. 1A illustrates the multi-scale context feature 
extraction strategy. 

As shown in Fig. 1A, given an RNA sequence with L nucleotides, 
M2pred generates the three different discriminative features, i.e., BPP (L 
× 1), PSFM (L × 4), and OHE (L × 4), by calling the corresponding 
programs (refer to the section of “Feature Representation” for detail) 
and obtains a super feature, i.e., BPP + PSFM + OHE (L × 9), by jointing 
these three types of features serially. Based on the super feature, a 2D 
initialization sliding window of size Rθ×9 (2D-θ-SW), is first used to 
transform 2D matrix-format BPP + PSFM + OHE into a cube-format 
feature of size RL×θ×9, called 3D-RL×θ×9. Subsequently, a 2D clipping 
algorithm of size Rθ×9 (2D-θ-C) and a 2D clipping algorithm of size 
R(
̅̅
τ

√
×θ)×(

̅̅
τ

√
×9) (2D-τ-C) are applied to 3D-RL×θ×9 and extract contextual 

features of two scales, i.e., a 2D minimal feature of size Rθ×9 and a 2D 
maximal feature of size R(

̅̅
τ

√
×θ)×(

̅̅
τ

√
×9), respectively, called 2D-Rθ×9 and 

2D-R(
̅̅
τ

√
×θ)×(

̅̅
τ

√
×9). Furthermore, a 3D minimal sliding window of size 

Rφ×θ×9 (3D-φ-SW) and a 3D maximal sliding window of size Rω×θ×9 (3D- 
ω-SW) are also employed to extract contextual features of two scales, 
respectively, called 3D-Rφ×θ×9 and 3D-Rω×θ×9. Finally, the contextual 
feature of four scales mentioned above are regularly stacked into a 
contextual pyramid feature as input source of deep multi-shot neural 
network framework. 

To search the optimal local 2D initialization sliding window hyper- 
parameter θ, 2D clipping window size hyper-parameter τ, 3D minimal 
sliding window hyper-parameter φ, and 3D maximal sliding window 
hyper-parameter ω, we use the strategy of grid search and adjust the 
hyper-parameter θ, τ, φ, and ω by observing a DL model performance 
based on a baseline single-scale contextual feature learning architecture 
(abbreviated as SSCFL) shown in Supplemental Fig. S1, on training 
dataset TR119 over five-fold cross-validation tests. Supplemental Fig. S2 
demonstrates the performance variation curve of PCC versus sliding 
window size. By visiting Fig. S2, it is easy to find that, SSCFL gains better 
performance at θ of 25, τ of 9, φ of 9, and ω of 31, respectively (refer to 
the Supplemental Text S1 and Figs. S1 and S2 for detail). Hence, the 
following values for the above hyper-parameters θ = 25, τ = 9, φ = 9, 
and ω = 31 are adopted in this study. 

2.6. Residual attention block 

Capturing long-range dependencies knowledge of target nucleotides 
is central importance in computational biology. Although through 
repeating convolutional and recurrent operations can process long- 
range dependencies, repeatedly adding these operations may result in 
computationally inefficient and vanishing gradients. In this regard, the 
modified residual network block [40] embedded an attention module 

X.-Q. Fan et al.                                                                                                                                                                                                                                  

http://linearfold.org/partition
https://ftp.ncbi.nih.gov/
https://ftp.ncbi.nih.gov/


Analytical Biochemistry 654 (2022) 114802

4

[41], called “residual attention network” [42], which not only focuses 
on digging both long-distance and local intra-sequence dependencies, 
but also guarantees the extraction of the key position knowledge of the 
target nucleotides, is employed to dig out more discriminative infor
mation. Moreover, we use the dilated convolutional neural network [22, 
23] having kernel size of (2, 2) and the dilation rate (DR) of 2 instead of 
the plain convolutional in the traditional residual network [40] to 
expand the perception of the network. Each dilated convolutional layer 
is followed by the batch normalization layer [43], the gaussian error 
linear units (GELU) activation function, and a dropout strategy with a 
ratio of 10% [44]. It is shown in Fig. 1C and D that implementation of 
the lth residual attention block and attention module can be expressed as 
follow, respectively: 

ul+1 = f (ul +F (ul,W l)) (2)  

yc = σ
[

W 2 × f

(

W 1 ×
1

W × H
∑W

i=1

×
∑H

j=1
xc(i, j)

)]

× xc

(

i, j

)

, xc

(

i, j

)

∈RW×H×C (3)  

where ul and ul+1 denote the input and output of the lth residual 
attention block, respectively; W l is a set of weights in the lth residual 
attention block, which contains the weights of two dilated convolutional 
layers and two batch normalization layers. F is the activation function 
GELU, while F stands for the residual function. Where xc(i, j) and yc 
denote the input and output of the attention module, respectively; W 1 
and W 2 is the weights of two fully-connected hidden layers (FC) [45], 
respectively; σ is the sigmoid function [46]. 

2.7. Deep multi-shot neural network 

In this study, the solvent accessibility prediction of RNA is taken as a 
regression problem. Leveraging the power of the residual attention 
network and multi-scale context feature extraction scheme, we design 
and implement the custom-made deep multi-shot neural network 
framework (MSNN) to solve this problem. As shown in Fig. 1B, the 
proposed MSNN framework, which is equipped with four receptive 
fields corresponding to four scales spatial feature of the contextual 

pyramid feature, i.e., 2D-Rθ×9, 2D-R(
̅̅̅φ√
×θ)×(

̅̅̅φ√
×9), 3D-Rφ×θ×9, and 3D- 

Rω×θ×9, is constructed with initial dilated convolutional layers followed 
by residual attention blocks, fully-connected hidden layers, and a sig
moid activation function. 

In MSNN, the input of each receptive field is one single-scale 
contextual feature map in contextual pyramid feature backbone. To 
extract the discriminative contextual knowledge, for each receptive 
field, N1 initial dilated convolutional layers, which are used before a 
group of N2 residual attention basic blocks, are first employed to 
transform the input feature maps into a spatial vector with a larger 
signal channel. Each initial dilated convolutional layer, which is fol
lowed by the batch normalization layer, the GELU activation function, 
and the max-poling layer for further down-sampling, is configured a 
larger size convolution K to preserver as much of the original input in
formation as possible. Besides, a dropout strategy with a ratio of d% is 
utilized to reduce network overfitting during training. Subsequently, the 
spatial vector is fed into a group of N2 residual attention basic blocks. 
Then, to capture the fusion information of the contextual pyramid 
feature, four transformed features of four receptive fields are coalesced 
by using scale-transfer operations. The fusion feature maps are entered 
into a group of N3 residual attention basic block and N4 dilated con
volutional layers. Here, the batch normalization layer, the GELU acti
vation function, and a dropout ratio of d% are again utilized. Finally, the 
RSA value of each nucleotide is calculated by N5-layer fully-connected 
hidden layers with h hidden units and a sigmoid activation function. 

MSNN framework, which is implemented using Pytorch software 
(version 1.3.1) [47], is trained on one NVIDIA TITAN X graphics pro
cessing unit (GPU) to speed up training. In the model training process, 
we use the mean squared error function to calculate the loss and opti
mized the model by the Adam algorithm [48] with a learning rate of lr 
and a batch size of bs. In this study, we use the strategy of grid search and 
adjust the network’s hyper-parameters, i.e., N1, N2, N3, N4, N5, d, K, and 
h, by observing the model performance on the training dataset TR119 
over 5-fold cross-validation tests. Finally, according the best perfor
mance of MSNN model, we use the following values for the above 
hyper-parameters: N1 = 2 and 3, N2 = 12, N3 = 16, N4 = 4, N5 = 1, d =
10, K = {(3, 2), (5, 2), (5, 3), (7, 2), (9, 2)}, h = 45, rl = 0.001, and bs =
2000. 

Fig. 1. Architecture of deep multi-scale context feature learning. (A) Multi-scale Context Feature Extraction; (B) Multi-shot Neural Network Framework; (C) Residual 
Attention Block; (D) Attention Module. 
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3. Results and discussion 

3.1. Performance comparison between different features 

This section examines to what extent the three sequence-based fea
tures and their combined features can help to predict RNA solvent 
accessibility. Specifically, for efficient and time-saving selection of 
optimal feature combination, three sequence-based features, BPP, 
PSFM, and OHE, and two separate serial feature combinations, BPP +
PSFM and BPP + PSFM + OHE, are used as the inputs to the multilayer 
perceptron (MLP) algorithm [49] (see Supplemental Fig. S3), and the 
performance of each feature is investigated. “+” means simple serial 
combination of different sequence-based features. Furthermore, inspired 
by the work of RNAsol [20], each nucleotide is extracted more 
discriminative feature from each feature using a sliding window of size 
10. Each feature is evaluated by performing five-fold cross-validation on 
the training dataset TR119. Table 1 summarizes the discriminative 
performance comparison between the five features on TR119 over 
five-fold cross-validation. 

From Table 1, we observe that the BPP + PSFM + OHE feature 
consistently outperforms other four features in terms of two evaluation 
indexes, i.e., PCC and MAE. Concretely, the PCC and MAE of BPP +
PSFM + OHE are 0.35 and 38.76, which are improvement of 9.3% and 
0.9%, respectively, over the second-best feature, i.e., BPP + PSFM. 
These experimental results demonstrate that the three single-view fea
tures contain complementary information. 

3.2. Comparison to state-of-the-art methods 

The categories of the methods mentioned in the introduction section 
can be generally categorized into two major groups, i.e., ML-based 
methods and DL-based methods. The purpose of this section is to 
experimentally demonstrate the efficacy of the proposed M2pred by 
comparing it with both ML-based methods (i.e., RNAsnap-seq and 
RNAsnap-prof) and DL-based methods (i.e., RNAsol, RNAsnap2, and 
RNAsnap2(SingleSeq)). 

3.3. Comparison to ML-based models 

This study compared the performance of the two ML-based methods, 
i.e., RNAsnap-seq [14] and RNAsnap-prof [14], which are trained on 
one dataset contained 89 non-redundant protein-bound RNAs (TR89). 
Note that, to make the comparison as fair as possible, in this section, our 
proposed M2pred learns the prediction model with the same training 
dataset of RNAsnap-seq and RNAsnap-prof, i.e., TR89. Subsequently, the 
model is assessed on the independent testing datasets of RNAsnap-seq 
and RNAsnap-prof, i.e., TS44, CN48, and TEST36. Here, the strategy 
of a grid search is again used to adjust the network’s hyper-parameter by 
observing the model performance on the training dataset TR89 over 
five-fold cross-validation tests. To obtain the prediction results on TS44, 
CN48, and TEST36, standalone packages of RNAsnap-seq and 
RNAsnap-prof are downloaded at https://servers.sparks-lab.org/do 

wnloads/RNAsnap.tgz. 
Table 2 demonstrates the performance comparison of M2pred, 

RNAsnap-seq, and RNAsnap-prof on the datasets, i.e., TS44, CN48, and 
TEST36, over independent validation tests. Supplementary Table S3 
lists the p-values in Wilcoxon rank-sum test for the differences in pre
dicted RSA values between the three methods on test datasets, i.e., TS44, 
CN48, and TEST36. From Table 2, it is clear that compared with the ML- 
based models, the proposed M2pred performs best in terms of the PCC 
and MAE values on TS44, CN48, and TEST36. Specifically, M2pred 
achieves 74.3% and 11.9% average improvement in PCC and MAE on 
the three testing datasets, compared with the better performer of 
RNAsnap-seq. Taking results on CN48 as an example, the PCC and MAE 
of M2pred are 0.50 and 30.62, which are 108.3% and 16.5%, 117.3% 
and 15.7% higher, respectively, than RNAsnap-seq and RNAsnap-prof, 
with p-values <10− 5. 

Fig. 2 illustrates the head-to-head comparisons between M2pred and 
the two ML-based methods based on PCC and MAE values on the union 
dataset of TS44, CN48, and TEST36, which contains 128 independent 
test RNA targets. Out of the 128 targets, there are 107 and 98, 115 and 
101 cases where M2pred has better PCC and MAE values than RNAsnap- 
seq and RNAsnap-prof, respectively. As expect, a low Pearson’s corre
lation coefficient (PCCþ) is observed between the PCC values of M2pred 
and those of all comparison methods on the union dataset of TS44, 
CN48, and TEST36. This indicates that there is significant difference 
between these three methods. 

3.4. Comparison to DL-based models 

The compared DL-based methods of three control methods include 
RNAsol [20], RNAsnap2 [21], and RNAsnap2(SingleSeq) [21], and all 
the prediction models are learned on the training dataset TR119. Note 
that, in RNAsnap2 [21] and RNAsnap2(SingleSeq) [21], there are 24 
RNAs are randomly selected from TR119 to tune the hyper-parameters. 
In this section, the proposed M2pred uses the same training dataset as 
RNAsol, RNAsnap2, and RNAsnap2(SingleSeq), i.e., TR119, to learn 
prediction model. Here, we use the strategy of a grid search and adjust 
the network’s hyper-parameter by observing the model performance on 
the training dataset TR119 over 5-fold cross-validation tests. For an 
objective and fair comparison, the standalone packages of RNAsol, 
RNAsnap2, and RNAsnap2(SingleSeq) are first downloaded from 
https://yanglab.nankai.edu.cn/RNAsol/and https://github.com/jaswin 
dersingh2/RNAsnap2/, and installed locally. All RNA sequences in 
TS45, TS31, and TEST36 are then fed into the standalone program of 
these methods to calculate the solvent accessibility of RNA. Note that, 
M2pred, RNAsol, and RNAsnap2 utilize the same NCBI’s reference 
database to generate evolutionary features. Table 3 provides a com
parison of the predictive performance between the proposed M2pred, 
RNAsol, RNAsnap2, and RNAsnap2(SingleSeq) on the independent test 

Table 1 
Performance comparison of different features on TR119 over five-fold cross- 
validation tests using the SVM algorithm.  

Feature Type PCC MAE 

value p-value value p-value 

BPP 0.12 3.1 × 10− 3 46.32 8.3 × 10− 4 

PSFM 0.21 2.4 × 10− 2 42.57 5.7 × 10− 2 

OHE 0.24 6.8 × 10− 2 43.65 1.8 × 10− 3 

BPP + PSFM 0.32 7.1 × 10− 1 39.12 1.1 × 10− 1 

BPP + PSFM + OHE 0.35  38.76  

The p-values in Student’s t-test are calculated for the differences between BPP +
PSFM + OHE and other features. 

Table 2 
Performance comparison between M2pred and other state-of-the-art ML-based 
RSA prediction methods on three independent test datasets, i.e., TS44, CN48, 
and TEST36.  

Dataset Method PCC MAE 

value p-value value p-value 

TS44 RNAsnap-seq 0.36 1.8 × 10− 3 39.04 1.6 × 10− 1 

RNAsnap-prof 0.38 4.2 × 10− 4 40.22 3.3 × 10− 1 

M2pred 0.51  36.15  
CN48 RNAsnap-seq 0.24 1.6 × 10− 12 36.70 7.3 × 10− 5 

RNAsnap-prof 0.23 5.7 × 10− 13 36.29 5.4 × 10− 5 

M2pred 0.50  30.62  
TEST36 RNAsnap-seq 0.26 7.1 × 10− 6 42.23 3.7 × 10− 2 

RNAsnap-prof 0.25 1.3 × 10− 6 41.64 5.7 × 10− 2 

M2pred 0.45  37.21  

The p-values in Student’s t-test are calculated for the differences between 
M2pred and other control methods. 
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datasets, i.e., TS45, TS31, and TEST36. Supplementary Table S4 sum
marizes the p-values of the Wilcoxon rank-sum test for differences in 
predicted RSA values between the four methods on TS45, TS31, and 
TEST36. 

As shown in Table 3, according to the PCC and MAE average, which 
are two overall measurements of the quality of prediction performance, 
we can find that the M2pred acts as the best performer followed by 
RNAsnap2, RNAsnap2(SingleSeq), and RNAsol on three independent 
test datasets. Taking results on TS45 as an example, the PCC and MAE 
values of M2pred are 0.58 and 31.07, which are 7.4% and 5.3%, 16.0% 
and 8.4%, and 28.9% and 14.3% higher than those of RNAsnap2, 
RNAsnap2(SingleSeq), and RNAsol, respectively. In particular, M2pred 
achieves the highest PCC values and it is the sole method with PCC 
values larger than 0.52 on TS45 and TS31. By carefully observing 
Table 3, it is found that the differences between M2pred and other 
existing DL-based methods in the PCC and MAE values are not consis
tently statistically significant. Nonetheless, from the viewpoint of the p- 
values on Wilcoxon rank-sum test for differences in predicted RSA 
values between four methods listed in Supplementary Table S4, the p- 
values smaller than 10− 58 indicate the distribution of predicted RSA 
values between M2pred and other DL-based methods are significantly 
different. 

By visiting Fig. 3, it is easy to find that, among the 112 target RNAs in 
the union dataset of TS45, TS31, and TEST36, M2pred has 71 and 78, 58 
and 63, and 61 and 67 cases with better PCC and MAE values, respec
tively, than RNAsol, RNAsnap2, RNAsnap2(SingleSeq). It is worthwhile 
mentioning that, there is a low Pearson’s correlation coefficient (PCCþ) 
between the proposed M2pred and RNAsol (0.56), RNAsnap2 (0.66), and 
RNAsnap2(SingleSeq) (0.63) on the PCC evaluation index. However, 
M2pred has a high correlation with RNAsnap2 (0.79) and RNAsnap2 

(SingleSeq) (0.77) on the MAE evaluation index. We speculate that due 
to the three DL-based methods use similar feature representation (i.e., 
one-hot encoding) and the same training dataset (i.e., TR119). 

To understand the influence of the quality of the MSA on the pre
diction performance of M2pred, RNAsnap2(SingleSeq), and RNAsnap2, 
we have employed the overall evaluation index, i.e., PCC, to measure the 
prediction performance of each RNA in the union dataset of TS45, TS31, 
and TEST36. Supplementary Text 3 demonstrates the relationship be
tween the values of PCC and the number of effective homologous se
quences (Neff ) [50]. We presume that the performance of M2pred, 
RNAsnap2, RNAsnap2(SingleSeq) will be greatly affected if the amount 
of information in MSA is insufficient; when the amount of MSA infor
mation reaches or falls below a certain level, the dependence between 
the increase in MSA information and the performance improvement of 
these methods becomes less. 

3.5. Performance comparison on both protein-bound and protein-free 
RNAs 

To further investigate the highlights of the proposed M2pred, Ta
bles 2 and 4, and Supplementary Tables S3 and S5 demonstrate the 
performance comparison between M2pred and other existing state-of- 
the-art ML-based methods (i.e., RNAsnap-seq and RNAsnap-prof) and 
DL-based methods (i.e., RNAsol, RNAsnap2, and RNAsnap2(SingleSeq)), 
on the protein-bound and protein-free RNAs, respectively. There are 37 
protein-bound RNAs and 8 protein-free RNAs in TS45, 31 protein-free 
RNA in TS31, 44 protein-bound RNAs in TS44, and 48 protein-free 
RNAs in CN48, 5 protein-bound RNAs and 31 protein-free RNAs in 
TEST36. For the convenience of comparison with DL-based methods on 
the protein-bound and protein-free RNAs, the above 42 protein-bound 
and 70 protein-free RNAs in the union set of TS45, TS31, and TEST36 
are separately collected to composite a protein-bound independent test 
dataset, called PB42 and a protein-free independent test dataset, called 
PF70. 

From Tables 2 and 4, S3, and S5, we can observe that M2pred is 
consistently superior to both ML-based methods and DL-based methods 
concerning the two evaluation indexes, i.e., PCC and MAE, on protein- 
bound and protein-free datasets, i.e., TS44, CN48, PB42, and PF70. 
Taking results in DL-based methods as an example, the PCC and MAE 
values of M2pred are greater than 0.50 and smaller than 33.10, 
respectively, for both two datasets, which outperform other three DL- 
based methods, i.e., RNAsol, RNAsnap2, and RNAsnap2(SingleSeq). 
More specifically, compared with the second-best method, M2pred 
achieves 7.5% and 0.6% improvements in PCC and MAE on protein- 
bound dataset, i.e., PB42, respectively. Moreover, by revisiting 
Tables S3 and S5, it should be pointed out that, although the p-values 
between M2pred and other methods in PCC and MAE evaluation indexes 
are both larger than 0.05 on PB42 and PF70, the p-values on Wilcoxon 
rank-sum test for the difference in predicted RSA values between the 
four methods on PB42 and PF70 are both less than 10− 87, which indicate 

Fig. 2. Head-to-head comparisons of PCC and MAE between M2pred and other ML-based methods on the union set of TS44, CN48, and TEST36. PCCþ is the 
Pearson’s correlation coefficient between the PCC or MAE values of the two compared methods. Each purple, green, and red circle mean one RNA in the TS44, CN48, 
and TEST36, respectively. The numbers in each panel represent the number of points in the upper and lower triangles, respectively. (For interpretation of the 
references to colour in this figure legend, the reader is referred to the Web version of this article.) 

Table 3 
Performance comparison between M2pred and other state-of-the-art DL-based 
RSA prediction methods on TS45, TS31, and TEST36.  

Dataset Method PCC MAE 

value p-value value p-value 

TS45 RNAsol 0.48 6.9 × 10− 2 35.49 2.6 × 10− 2 

RNAsnap2 0.54 3.4 × 10− 1 33.37 3.7 × 10− 1 

RNAsnap2(SingleSeq) 0.50 7.3 × 10− 2 33.91 1.7 × 10− 1 

M2pred 0.58  31.07  
TS31 RNAsol 0.41 4.1 × 10− 1 36.36 1.7 × 10− 1 

RNAsnap2 0.51 9.6 × 10− 1 32.65 4.8 × 10− 1 

RNAsnap2(SingleSeq) 0.48 6.6 × 10− 1 33.53 3.2 × 10− 1 

M2pred 0.52  31.42  
TEST36 RNAsol 0.44 4.9 × 10− 1 38.62 3.1 × 10− 1 

RNAsnap2 0.48 9.1 × 10− 1 36.11 9.4 × 10− 1 

RNAsnap2(SingleSeq) 0.47 9.3 × 10− 1 36.70 8.4 × 10− 1 

M2pred 0.48  36.26  

The p-values in Student’s t-test are calculated for the differences between 
M2pred and other control methods. 
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the distribution of predicted RSA values between M2pred and other 
methods are significant statistically. 

Although M2pred use fused multi-view features to represent the in
formation contained in the RNA sequence, in most of the cases it in
troduces redundant or irrelevant information inevitably that will 
seriously reduce the efficiency of RSA prediction model. Hence, elimi
nating noise in the feature is also an important step in the process of RSA 
identification. Furthermore, the influence of RNA sequence features on 
RSA prediction is not fully elucidated. It is still improved in RSA pre
diction by extracting features based on RNA sequences. 

3.6. Case studies 

Two RNA sequences, 3k0j_E and 6p2h_A, selected from the two in
dependent test sets, i.e., TS44 and TS31, respectively, are used for case 
studies. Here, 3k0j_E is employed to compare with traditional ML-based 

methods, while 6p2h_A is used for comparison with DL-based methods. 
The detailed comparisons between predicted versus actual RSA values 
on 3k0j_E and 6p2h_A are separately shown in Supplementary 
Figs. S4A and B. The actual RSA values calculated by POPS program are 
fitted based on the experimental 3D structures of the two RNAs. 

By visiting Figs. S4A and B, it is easily found that M2pred consistently 
outperforms other existing state-or-the-art methods, i.e., RNAsnap-seq, 
RNAsnap-prof, RNAsol, RNAsnap2, and RNAsnap2(SingleSeq), on both 
two cases. Concretely, on 3k0j_E and 6p2h_A, M2pred achieves the 
highest PCC values (i.e., 0.74 and 0.75) and the best MAE values (i.e., 
25.76 and 24.88). From Fig. S4, we can also find that, compared with 
other state-of-the-art methods, the predicted values of M2pred are more 
similar to the actual values of 3k0j_E and 6p2h_A. In addition, Table 5 
demonstrates the performance and running time comparison between 
M2pred and other state-of-the-art solvent accessibility prediction 
methods on 3k0j_E and 6p2h_A. Note that, in order to make the com
parison as fair as possible, the running time of M2pred and the control 
methods are evaluated on the same computational device (Intel(R) Core 
(TM) i9-10920X CPU @3.50 GHz, 64.0 GB of RAM, NVIDIA GeForce 
RTX3090 24.0 GB). From Table 5, compared with traditional machine 

Fig. 3. Head-to-head comparisons of PCC and MAE between M2pred and other DL-based methods on the union set of TS45, TS31, and TEST36. PCCþ is the Pearson’s 
correlation coefficient between the PCC or MAE values of the two compared methods. Each purple, green, and red circle mean one RNA in the TS45, TS31, and 
TEST36, respectively. The numbers in each panel represent the number of points in the upper and lower triangles, respectively. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the Web version of this article.) 

Table 4 
Performance comparison between M2pred and other state-of-the-art DL-based 
solvent accessibility prediction methods on protein-bound and protein-free 
datasets, i.e., PB42 and PF70.  

Dataset Method PCC MAE 

value p-value value p-value 

PB42 RNAsol 0.50 8.5 × 10− 2 37.60 9.6 × 10− 2 

RNAsnap2 0.53 2.8 × 10− 1 35.07 4.7 × 10− 1 

RNAsnap2(SingleSeq) 0.49 5.2 × 10− 2 36.46 2.2 × 10− 1 

M2pred 0.57  33.10  
PF70 RNAsol 0.45 2.4 × 10− 1 36.26 3.0 × 10− 2 

RNAsnap2 0.50 8.1 × 10− 1 33.45 5.7 × 10− 1 

RNAsnap2(SingleSeq) 0.48 7.9 × 10− 1 34.01 3.4 × 10− 1 

M2pred 0.50  32.67  

The p-values in Student’s t-test are calculated for the differences between 
M2pred and other control methods. 

Table 5 
The performance and inference time comparison between M2pred and other 
state-of-the-art solvent accessibility prediction methods on 3k0j_E and 6p2h_A.  

RNA name Method PCC MAE Inference time 
(minute) 

3k0j_E (87 
bases) 

RNAsnap-seq 0.40 37.21 0.021 
RNAsnap-prof 0.50 36.06 1.25 
M2pred 0.74 25.76 53.30 

6p2h_A (69 
bases) 

RNAsol 0.32 42.80 115.39 
RNAsnap2 0.43 34.75 35.91 
RNAsnap2 
(SingleSeq) 

0.45 35.61 0.063 

M2pred 0.75 24.88 41.58  
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learning-based methods, i.e., RNAsnap-seq and RNAsnap-prof, the per
formance of our proposed M2pred is significantly improved, despite the 
longer running time of M2pred. Compared with three deep learning- 
based methods, i.e., RNAsol, RNAsnap2, and RNAsnap2(SingleSeq), 
the running time of M2pred is slightly higher than that of RNAsnap2, but 
M2pred achieves 74.4% and 28.4% average improvements of PCC and 
MAE, respectively, on 6p2h_A. We also count the number of model pa
rameters of RNAsol, RNAsnap2, and M2pred. The parameter number of 
the proposed M2pred is 1,771,337, which is less than that of RNAsol, but 
larger than that of RNAsnap2 (refer to the Supplemental Text S2 for 
detail). We tried to count the network parameters of RNAsnap, but the 
SVM-based RNAsnap uses the Kernel technique, and it is difficult to 
compute its network parameters directly. Thus, we did not compare with 
RNAsnap. 

4. Conclusions 

Accurate prediction of RNA solvent accessibility is one of the most 
important tasks in the annotation of RNA functions. In order to enhance 
the prediction performance of RNA solvent accessibility, in this study, 
we have designed and implemented a novel deep learning-based 
approach, named M2pred. Benchmarking experiments show that the 
performance of M2pred is superior to other existing state-of-the-art ML- 
and DL-based methods, i.e., RNAsnap-seq, RNAsnap-prof, RNAsol, 
RNAsnap2, and RNAsnap2(SingleSeq). The characteristics of this 
approach are summarized as follows: First, a new multi-scale contextual 
feature extraction strategy is designed to provide more discriminative 
feature of target nucleotides. Second, a modified residual attention 
network is used to effectively dig both long-distance and local intra- 
sequence dependencies, but also guarantees the extraction of high- 
level knowledge related to the target nucleotides. Furthermore, the 
proposed method M2pred is trained by the designed deep learning-based 
pipeline, which effectively learns the solvent accessibility knowledge 
buried in sequence-based features. For easy to use, the standalone 
package of M2pred could be also downloaded at https://github.com/ 
XueQiangFan/M2pred/. 

Although M2pred has achieved a good performance in predicting 
RNA solvent accessibility, it has room for further improvement. There 
are some other important aspects that may be improved, which include: 
(1) developing more accurate prediction models to predict the related 
feature source information, such as effective evolutionary information 
based on multiple sequence alignment, RNA secondary structure, and 
protein-RNA recognition; (2) employing the powerful deep learning al
gorithm, to obtain the available information extracted from the original 
feature representation; (3) developing a more accurate method by 
combining M2pred and other state-of-the-art RNA solvent accessibility 
prediction methods. Finally, we believe that M2pred will be exploited as 
a useful tool to speed up the progress of RNA function detection and 
understanding. 
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